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Let 2s points yi=&?� y2s< } } } < y1<? be given. Using these points, we define
the points yi for all integer indices i by the equality yi= y i+2s+2?. We shall write
f # 2(1)(Y) if f is a 2?-periodic continuous function and f does not decrease on
[ yi , yi&1], if i is odd; and f does not increase on [ y i , yi&1], if i is even. In this
article the following Theorem 1��the comonotone analogue of Jackson's inequality��
is proved.

Theorem 1. If f # 2(1)(Y), then for each nonnegative integer n there is a tri-
gonometric polynomial {n(x) of order �n such that {n # 2(1)(Y), and | f (x)&
?n(x)|�c(s) |( f; 1�(n+1)), x # R, where |( f; t) is the modulus of continuity of f,
c(s)=const. Depending only on s. � 1999 Academic Press
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1. INTRODUCTION

Let Tn be the space of trigonometric polynomials

{n(x) :=a0+ :
n

k=1

(ak cos kx+bk sin kx)

of order �n.
We denote by

& f & :=max
x # R

| f (x)|,

|( f; t)-modulus of continuity of f.
A continuous 2?-periodic function f is called bell-shaped, if it is even and

decreases on [0, ?].
In 1968 Lorentz and Zeller [11] proved the following Theorem LZ.
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Theorem LZ. There exists a constant c with the following property. For
each bell-shaped function f, one can find a bell-shaped trigonometric polyno-
mial {n for which

& f&{n&�c|, \f;
1
n+ .

In the other words, Jackson's inequality remains true, if we approximate
bell-shaped functions by bell-shaped polynomials.

In the same paper [11], they applied Theorem LZ to the estimate of
approximation of monotone and continuous functions on [&1, 1] by
monotone algebraic polynomials on [&1, 1]. Since then, the problem of
uniform and pointwise approximation of monotone and piecewise
monotone functions f on a segment by comonotone algebraic polynomials
has been deeply investigated by (alphabetically) Beatson, DeVore, Ditzian,
Dzyubenko, Gilewicz, Hu, Iliev, Kopotun, Leviatan, Lorentz, Newman,
Passow, Raymon, Roulier, Shevchuk, Shvedov, Wu, Yu, Zeller, Zhou, and
others, see [1, 4�11, 13, 14] for the references. At the same time the author
does not know any similar results for the periodic case, except
Theorem LZ. Koniagin and Demidovich have attracted attention to the
``periodic'' case in their talk with Shevchuk, who has offered to the author
to investigate this problem. A possible reason of absence of ``periodic''
results is the following. The problem of approximation of monotone con-
tinuous periodic functions is not interesting since these functions are identi-
cal constants, but the methods of piecewise-monotone approximation by
algebraic polynomials have only recently advanced.

Let 2s points yi

&?� y2s< y2s&1< } } } < y1<?

be given. Starting from these points, we define by

yi= yi+2s+2?

the points yi for all integer indexes i, in particular, y0= y2s+2?, y2s+1=
y1&2?, etc. We denote Y :=[ yi]i # Z . We shall write f # 2(1)(Y) if f is a
2?-periodic continuous function which does not decrease on [ yi , yi&1], if
i is odd, and does not increase on [ yi , yi&1], if i is even.

Remark. The definition of the set 2(1)(Y) used the fact that the number
of initial points yi is even. Similarly, it is possible to define formally the set
2(1)(Y) for odd number of initial points. It is easy to notice, however, that
in this case the set 2(1)(Y) would consist of identical constants only, that
is not interesting.
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We denote

6(t) := `
2s

i=1

sin 1
2(t& yi),

and observe that 6 # Ts , that is, 6 is a trigonometric polynomials of order
s. Since (t& yi) sin1

2(t& yi)>0, t # [&?, ?), y i # [&?, ?), t{ y i , for a
2?-periodic differentiable function f, the condition f # 2(1)(Y) is equivalent
to the inequality

f $(t) 6 (t)�0, t # R.

Now we are in a position to formulate the main result of the
paper��Theorem 1, and the known result��Theorem LS. Theorem LS is a
corollary of results for comonotone approximation by algebraic polyno-
mials in the papers by Leviatan [8] and Leviatan and Shevchuk [10], it
can be derived (using change of variables x=cos t), say, as a corollary of
Theorem 1 in [10].

Theorem LS. Let the set Y be symmetric about the origin, and 0 # Y and
? # Y. If f # 2(1)(Y) is even, then for each nonnegative integer n there is a
trigonometric polynomial {n of order �n such that

{n # 2(1)(Y)

and

& f&{n&�c(s) | \f;
1

n+1+ ,

where c(s)=const, depends only on s.

Modifying for the periodic case the arguments of comonotone
approximation by algebraic polynomials, we prove Theorem 1, which holds
for arbitrary Y and f # 2(1)(Y).

Theorem 1. If f # 2(1)(Y), then for each nonnegative integer n there is a
trigonometric polynomial {n of order �n such that

{n # 2(1)(Y)

(that is,

{$n(x) 6 (x)�0, x # R)
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and

& f&{n&�c(s) | \f;
1

n+1+ ,

where c(s)=const depends only on s.

Remark. In Theorem LS it is possible to replace

& f&{n&�c(s) | \f;
1

n+1+ (1)

by

& f&{n&�c(Y) |2 \f;
1

n+1+ ,

where c(Y)=const, depends only on Y, and |k( f; t) is the modulus of
smoothness of order k. One can deduce this as a corollary of the result for
comonotone approximation by algebraic polynomials in the paper by
Kopotun and Leviatan [7] and the result of Djuzhenkova [2]. We do not
know now whether the same substitution is possible in Theorem 1. At the
same time we have a counterexample [12] that shows that in Theorem 1
it is impossible to replace (1) with

& f&{n&�c(Y) |k \f;
1

n+1+ ,

for k>2. In our forthcoming paper the analog of the second Jackson's
inequality, that is, for differentiable functions, shall be proved. Proof of
Theorem 2 is too long to be included in this paper. The assumption about
differentiability of function f makes it possible to formulate this analog in
a simpler form than Theorem 1.

Theorem 2. If 2?-periodic r times continuously differentiable function f
has on the period a finite number of changes of monotonicity, then for each
positive integer n there is a trigonometric polynomial {n of order �n such
that

f $(x) {$n(x)�0, x # R, (2)

and

& f&{n&�c(s)
1

(n+1)r | \f (r);
1

n+1+ , (3)

where c(s)=const does not depend on f and n.
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2. PROOF OF THEOREM 1

Theorem 1 follows from the trivial inequality & f& f (0)&�|( f; ?) and
the following Theorem 3.

Everywhere below we denote by c1 , c2 , ... constants, which depend only
on s.

Theorem 3. If f # 2(1)(Y), then for each integer n>c1 there is a tri-
gonometric polynomial {(s+2) n of order <(s+2) n such that

{(s+2) n # 2(1)(Y) (4)

and

& f&{(s+2) n&�c2| \f;
1
n+ . (5)

The proof of Theorem 3 we divide into five items.

(1%) We denote by

Jn(x)=
1
#n \

sin(nx�2)
sin(x�2) +

2(s+2)

the Jackson type kernel (see S. B. Stechkin [15]), where

#n=|
?

&? \
sin(nt�2)
sin(t�2) +

2(s+2)

dt.

The following inequalities are well known (see, for example, V. K. Dzjadyk
[3, pp. 130, 131], I. A. Shevchuk [13, p. 128])

|
?

&?
(1+n |t| )2s Jn(t) dt�c3 , (6)

where c3>1,

1
c4

n2s+3�#n�c4 n2s+3.

Evidently,

Jn # T(s+2)(n&1) .
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(2%) We fix an integer

n>4s2c3+s=: c1 , (7)

and for all j # Z, set

xj :=&
?j
n

;

$j (x) :=min {1;
1

n |sin((x&x j)�2)|= .

For x # [xj , xj+2?] we have, with t=min[x&x j ; xj+2?&x],

n } |
xj+?

x
$4

j (u) du }=n |
?

t
min {1;

1
n4 sin4(u�2)= du

�c5 min {1;
1

n3 |sin3(t�2)|==c5$3
j (x),

which implies, for x # [xj&2?, xj],

n } |
xj&?

x
$4

j (u) du }=n } |
xj+?

x+2?
$4

j (u) du}
�c5 $3

j (x+2?)=c5 $3
j (x). (8)

We shall use the estimate

" :
n

j=1&n

$2
j "<6. (9)

To prove (9) we fix j
*

, x # [xj*+1 , x j*
] and get

:
n

j=1&n

$2
j (x)= :

j*+n

j= j*+1&n

$2
j (x)�2+ :

j*+n

j= j*+2

$2
j (x)+ :

j*&1

j= j*+1&n

$2
j (x)

�2+\?
n+

2

:
j*+n

j= j*+2

1
(x&xj)

2 +\?
n+

2

:
j*&1

j= j*+1&n

1
(x&xj)

2

�2+2 \?
n+

2

\n
?+

2

:
�

j=1

1
j2<6.

We shall write j # H
*

, if

min
i # Z

|xj& y i |�2sc3

?
n

=: c6

?
n

;

and j # H, if j # H
*

, | j |�n, and j{&n.
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Remark. Observe the number of indices j #� H
*

such that | j |�n and
j{&n does not exceed 2c1 . Therefore assumption (7) means that H

*
and

H are not empty.

We shall use the simple estimates

} sin
xj& y i

2 }�c6

n
=

2sc3

n
>

2s
n

>
1
n

, j # H
*

, i # Z; (10)

} sin((x& yi)�2)
sin((x j& yi)�2) }= } cos

x&x j

2
+

sin((x&xj)�2)
sin((xj& yi)�2)

cos
xj& yi

2 }
�1+n } sin

x&x j

2 }
�

2
$j (x)

, x # R, j # H
*

, i # Z. (11)

For each j # H
*

denote by

T� j (x) :=|
x

xj&?
Jn(t&xj)

6(t)
6(x j)

dt,

d j :=T� j (xj+?);

Tj (x) :=
1
dj

T� j (x).

(3%) Let us prove two lemmas.

Lemma 1. If j # H
*

, then

1
2<dj<

3
2 . (12)

Proof. For each x we have

1&
6 (xj+x)

6 (xj)
=&

x
2

:
2s

i=1

cos((%& yi)�2)
sin((xj& yi)�2)

`
2s

&=1, &{i

sin((%& y&)�2)
sin((x j& y&)�2)

with some %, lying between x+xj and xj . Assumption j # H
*

and the
estimate (10) imply

} cos((%& y i)�2)
sin((xj& yi)�2) }�

n
c6

=
n

2sc3

,
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whereas (11) yields

} sin((%& y&)�2)
sin((xj& y&)�2) }�1+n } sin

%&xj

2 }�1+n |x|.

Hence

} 1&
6 (xj+x)

6 (x j) }�|x|
2

n
2sc3

2s(1+n |x| )2s&1

<
1

2c3

(1+n |x| )2s, x # R.

Therefore by (6)

|1&dj |= } |
?

&?
Jn(t) \1&

6 (xj+t)
6 (xj) + dt }

<
1

2c3
|

?

&?
(1+n |t| )2s Jn(t) dt�1�2. K

For each j # Z we denote

/j (x) :={0, if x�x j ,
1, if x>x j .

Lemma 2. If j # H, then for each x # [&?, ?]

|/j (x)&Tj (x)|�c7$2
j (x). (13)

Proof. Evidently,

Jn(x&x j)�c4n$2(s+2)
j (x).

Hence, (11) and (12) imply

|T $j (x)|=
1
dj

Jn(x&xj) } 6 (x)
6 (xj) }�22s+1c4 n$4

j (x), x # R.

Therefore, if x # [&?, xj], then

|/j (x)&Tj (x)|=|T j (x)|= } |
x

xj&?
T $j (t) dt }

�22s+1c4 n } |
x

xj&?
$4

j (t) dt }�c7$3
j (x),
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where we used (8) in the last inequality; and if x # (xj , ?], then

|/j (x)&Tj (x)|=|1&Tj (x)|= } |
xj+?

x
T $j (t) dt }

�22s+1c4n } |
xj+?

x
$4

j (t) dt }�c7$3
j (x). K

Corollary. For all x # [&?, ?] the estimate

:
j # H

|/ j (x)&Tj (x)|�c8 . (14)

holds.

Indeed, the estimates (13) and (9) lead to

:
j # H

|/ j (x)&Tj (x)|�c7 :
j # H

$2
j (x)�c7 :

n

j=1&n

$2
j (x)�c8 .

Remark. If j # H
*

, then

6 (xj) T $j (x) 6 (x)�0, x # R, (15)

and since T $j (x) is a trigonometric polynomial with the constant term equal
to

1
2? |

xj+?

xj&?
T $j (t) dt=

1
2?

,

then

Tj (x)=
1

2?
x+ pj (x), (16)

where pj # T(s+2)(n&1)+s /T(s+2) n .

(4%) We put

V(x) :=f (&?)+ :
j # H

( f (xj&1)& f (xj)) Tj (x). (17)

Lemma 3. If f # 2(1)(Y), then

V$(x) 6 (x)�0, x # R, (18)
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and for all x # [&?, ?], the estimate

| f (x)&V(x)|�c9| \f;
?
n+ (19)

holds.

Proof. The hypothesis f # 2(1)(Y) yields

( f (xj&1)& f (xj)) 6 (xj)�0, j # H,

that in view of (15), implies (18).
Now we prove (19). By (14) we have

} :
j # H

( f (x j&1)& f (xj))(Tj (x)&/ j (x)) }�c8| \f;
?
n+ , x # (&?; ?]. (20)

We let

S(x) :=f (&?)+ :
n

j=1&n

( f (x j&1)& f (xj)) /j (x).

It is easy to verify the estimate

|S(x)& f (x)|�| \f;
?
n+ , x # [&?, ?]. (21)

Now we represent the difference f (x)&V(x) in the form

f (x)&V(x)=f (x)&S(x)+ :
j # H

( f (xj&1)& f (xj))(/j (x)&Tj (x))

+ :
n

j=1&n, j #� H

( f (x j&1)& f (xj)) / j (x).

Since the last sum contains no more then 2c1 terms, it does not exceed

2c1| \f;
?
n+ . (22)

We combine (20), (21), and (22) to get (19) with the constant c9=
c8+1+2c1 . K

Lemma 4. The function V has the form

V(x)=
A
2?

x+q(x), (23)
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where q # T(s+2)(n&1)+s , A is a constant, and

|A|�2c1| \f;
?
n+ . (24)

Proof. By (17) and (16) the equality (23) is valid with

q(x)= f (&?)+ :
j # H

( f (xj&1)& f (xj)) pj (x)

and

A= :
j # H

( f (xj&1)& f (xj)).

Now we prove (24). To estimate the constant A we represent it in the form

A= :
n

j=1&n

( f (x j&1)& f (x j))& :
n

j=1&n, j #� H

( f (xj&1)&( f (xj)).

The first sum here is equal to f (x&n)& f (xn)= f (?)& f (&?)=0, where we
took into account the periodicity of the function f. The second sum con-
tains no more than 2c1 terms, therefore (24) holds. K

(5%) Now we conclude the proof of Theorem 3. To this end we con-
sider three cases.

(a) Suppose there are at least two numbers J+ # H and j& # H
such that 6 (xj+)>0 and 6 (x j&)<0. We take {(s+2) n(x) in the following
form

{(s+2) n(x)={V(x)&AT j&
(x), if A>0,

V(x)&AT j+
(x), if A�0.

Then (18) and (15) yield

{$(s+2) n(x) 6 (x)�0

and since by (23) and (16)

{(s+2) n(x)={q(x)&Ap j&
(x), if A>0,

q(x)&Ap j+
(x), if A�0,

so {(s+2) n # T(s+2) n . Finally we use the inequalities (19), (24), and (13)
and, say in the case A>0, we get

& f&{(s+2) n&=& f&V+ATj&
&�(c9+2c1(c7+1)) | \f;

?
n+ .
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(b) Let 6 (xj)>0 for every j # H. Then for each i # Z the estimate

y2i&1& y2i�(2c6+1)
?
n

(25)

holds. We fix k # Z such that f ( y2k)=maxx # R f (x) and choose l satisfying
k&s<l�k and f ( y2l&1)=minx # R f (x). We take

{(s+2) n(x) :=f ( y2k).

Then (25) yields

&{(s+2) n& f&=& f ( y2k)& f&� f ( y2k)& f ( y2l&1)

�( f ( y2k)& f ( y2k&1))+ } } } +( f ( y2l)& f ( y2l&1))

�s| \f;
(2c6+1) ?

n +�(2c6+2) s| \f;
?
n+ .

(c) If 6 (xj)<0 for every j # H, then we reason similar to (b).

Theorem 3 is proved.
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